

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE CIENCIAS QUÍMICAS SUBDIRECCIÓN DE ESTUDIOS DE POSGRADO

GUÍA DE ESTUDIO

para presentar los éxamenes de

Conocimientos del Área

Posgrado en Ciencias con Orientación en Procesos Sustentables

Sección de Razonamiento Matemático

Tema	Bibliografia
Capítulo 4: Ecuaciones de primer grado	Paul K. Rees & Fred W. Sparks, "Algebra",
Ejercicio 16	Reverté 4ta. edición (reimpresión 2011)
Capítulo 5: Ecuaciones simultáneas de primer	
grado	
Ejercicio 23	
Capítulo 8: Ecuaciones de segundo grado	
Ejercicio 37	
Capítulo 9: Ecuaciones simultáneas de	
segundo grado	
Ejercicio 45	
Capítulo 4 : La función lineal	Charles H. Lehmann. "Algebra", Limusa
Grupos 12 y 13	(reimpresión 1992)
Capítulo 5: La función cuadrática	
Grupo 14	

Sección de Fisicoquímica

Tema	Subtemas	Preguntas Tipo
Propiedades	1.1. Comportamiento PVT de	1- Si el trabajo realizado o
volumétricas de	sustancias puras.	recibido por un gas se define
Fluidos	1.2. Comportamiento ideal de los	V_2
	gases.	$w = \int_{V_1} P_{ext} dV$ como se usa un
	1.3. Ecuaciones de estado para	
	describir el comportamiento real de los	recipiente de volumen
	gases.	constante, entonces el valor de
	1.4. Correlaciones generalizadas para	w deberá ser menor a
	gases.	cero(_)
1ª. Ley de la	2.1. Principio de conservación de	
Termodinámica	energía.	2- En el metabolismo la energía
	2.2. Calor, energía interna, trabajo en	para el crecimiento y las
	sistemas abiertos y cerrados.	funciones orgánicas se puede
Termoquímica	3.1. Entalpía de formación al estado	ejemplificar muy bien por la
-	estándar.	reacción de degradación de la

2ª. Ley de la Termodinámica	 3.2. Concepto de capacidad calorífica a volumen constante (Cv) capacidad calorífica a presión constante (Cp) y la relación entre ambos. 4.1. Propiedades termodinámicas (entropía, energía de Gibbs y Helmotz) 4.2. Maquinas térmicas. 4.3. Balance de entropía para sistemas abiertos. 	glucosa $C_6H_{12}O_6$ (s) + $6O_2$ (g) \rightarrow $6CO_2$ (g) + $6H_2O$ (l). Para esta reacción se conoce que el cambio en la entalpía (ΔH) es negativo cuando se lleva a cabo dentro del cuerpo humano, pero si se lleva a cabo en el ambiente (con aire), el ΔH será entonces positivo(_) 3- El rompimiento del enlace de la molécula N_2 deberá ser por
Equilibrio Químico	5.1. Equilibrio químico en los sistemas Gaseoso. 5.2. Equilibrio y estabilidad.	su naturaleza altamente endotérmico(_) 4- Para el esquema de reacción $A \to B \to C$, en donde se pueden despreciar las concentraciones de cualquier intermediario. ¿Cuál de las siguientes afirmaciones es cierta durante la reacción? a) $[A] = -[B]$, b) $\Delta[A] = -\Delta[B]$, c) $\Delta[A] + \Delta[B] + \Delta[C] = 0$ Problema 5- Si se tiene oxígeno en un recipiente rígido completamente sellado, dé una interpretación cinética del porqué la presión (P) para un mol de moléculas de O_2 gaseoso es la mitad que para dos moles de átomos de O_2 gaseosos a una O_3 verdadero

Bibliografía.

- [1]. Chang, R. Fisicoquímica 3era edición. McGrawHill, 2008
- [2]. **Smith, J. M., Van Ness, H.C., Abbott**, M. M. Introducción a la termodinámica en Ingeniería Química. 7ª Ed. McGraw Hill, 2007

Sección de Ciencias Ambientales

Tema	Subtema	Bibliografia
Desarrollo Sustentable	Indicadores de sustentabilidad	Wright R., Nebel B. (2002) Environmental Science. Prentice Hall. USA
Contaminación Atmosférica	Tipos de contaminantes atmosféricos. Fuentes de contaminantes. atmosféricos Reacciones químicas atmosféricas. Métodos de Control. Normatividad de Fuentes fijas.	Wright R., Nebel B. (2002) Environmental Science. Prentice Hall. USA Manahan S. (2007) Química Ambiental. Reverté, México. Wark/Warner/Davis. (1998) Air Pollution. Its Origin and Control, Addison-Wesley ISBN 0-673-99416-3.
Residuos y Suelos Contaminados	Tipos de residuos. Normatividad en materia de residuos clasificación. Métodos de disposición final.	Manahan S. (2007) Química Ambiental. Reverté, México. Baird C. (2001) Química Ambiental. Reverté, España. Ley General del Equilibrio Ecológico y de Protección al Ambiente. Ley General para la Prevención y Gestión de los Residuos y su Reglamento. Normas oficiales mexicanas en materia de residuos.
Contaminación del Agua y su Control	Calidad del Agua. Tipos de tratamiento del agua (primario, secundario, terciario, avanzado). Normatividad en materia de agua.	Manahan S. (2007) Química Ambiental. Reverté, México. Normas oficiales mexicanas en materia de agua. Metcalf and Eddy (2004) Wastewater Engineering Treatment and Reuse. McGRaw-Hill, 4 Ed. New York.